Conecte con nosotros

Ciencia y Tecnología

Crean sensor para identificar niveles de oxígeno en la sangre

Publicado

piel, oxígeno, 43 KB, oxígeno

MÉXICO.- Ingenieros de la Universidad de California (UC) en Berkeley desarrollaron un nuevo sensor flexible que puede mapear los niveles de oxígeno en la sangre en áreas de la piel, tejidos y diversos órganos, lo que ayudará a controlar las heridas.

Este desarrollo incluye fotodetectores y diodos emisores de luz impresos, los cuales pueden detectar niveles de oxígeno en la sangre. La base de este desarrollo fue considerar que las lesiones no pueden curarse sin una afluencia constante de oxígeno.

Yasser Khan, egresado de ingeniería eléctrica y ciencias de la computación, comentó que su propósito fue desarrollar equipos ligeros, delgados y flexibles, sún un comunicado de la institución.

El sensor se desarrolló bajo principios de electrónica orgánica impresa en plástico, que se adapta a los contornos del cuerpo. A diferencia de los oxímetros de punta de los dedos, el nuevo sistema puede detectar los niveles de oxígeno en la sangre en nueve puntos de una cuadrícula y puede colocarse en cualquier lugar de la piel.

TE PODRÍA INTERESAR: Prueban técnica que ayuda a regenerar células sanguíneas en ratones

Según los investigadores, podría usarse potencialmente para mapear la oxigenación de los injertos de piel, o para monitorear los niveles de oxígeno en los órganos trasplantados.

Ana Claudia Arias, profesora de ingeniería eléctrica y ciencias de la computación en la Universidad de California en Berkeley, destacó que todas las aplicaciones médicas que usan monitoreo de oxígeno podrían beneficiarse de un sensor portátil.

Los oxímetros existentes usan diodos emisores de luz (LED) para hacer brillar luz roja e infrarroja, a través de la piel para luego detectar la cantidad de luz que llega al otro lado.

La sangre rica en oxígeno absorbe más luz infrarroja, por lo que al observar la proporción de luz transmitida, los sensores pueden determinar la cantidad de oxígeno en la sangre.

Estos oxímetros sólo funcionan en áreas del cuerpo que son parcialmente transparentes, como las puntas de los dedos o las orejas.

Desde 2014, el grupo de científicos trabaja en el desarrollo de LED orgánicos impresos, que se puedan usar para crear oxímetros delgados y flexibles para las yemas de los dedos o de las orejas.

El equipo se puso a prueba el sistema con un voluntario que respiraba aire con concentraciones de oxígeno progresivamente más bajas, similar a la altura, y descubrió que se correspondía con los que usaban un oxímetro estándar.

Notimex/atj

Ciencia y Tecnología

Obtienen combustible de hidrógeno a partir de agua de mar

Publicado

el

mar, hidrógeno, 75 KB, hidrógeno

MÉXICO.- Mediante energía solar, electrodos y agua salada, especialistas de la Universidad de Stanford desarrollaron un método para generar combustible de hidrógeno, una alternativa a los de carácter fósil.

Con ello trabajan una nueva forma de separar el hidrógeno (H) y el gas oxígeno del agua de mar a través de electricidad. Lo lograron en laboratorio y con agua salada de la Bahía de San Francisco, y los investigadores pretenden dejar la producción a fabricantes.

El H es una opción atractiva para el combustible, ya que no emite dióxido de carbono. La quema de ese elemento produce únicamente agua y debería atenuar los problemas del cambio climático.

TE PODRÍA INTERESAR: Un embrión no es una persona, es un conjunto de células: investigador de la UNAM

En un comunicado, la institución universitaria destaca que ese concepto, dividir el agua en hidrógeno y oxígeno con electricidad, llamada electrólisis, es una idea simple y antigua: una fuente de alimentación se conecta a dos electrodos colocados en el líquido.

Cuando se enciende la alimentación, sale gas de hidrógeno del extremo negativo, llamado cátodo, y el oxígeno respirable emerge en el extremo positivo, el ánodo. Los científicos descubrieron que si cubrían este último con cargas negativas, las capas repelen el cloruro y reducen la descomposición del metal subyacente.

Durante la electrólisis, reportaron que el sulfuro de níquel se convierte en una capa cargada negativamente que protege el ánodo. Al igual que los extremos negativos de dos imanes se empujan uno contra el otro, la capa cargada negativamente repele el cloruro y evita que alcance el metal del núcleo.

Sin el revestimiento con carga negativa, el ánodo únicamente funciona durante 12 horas en agua de mar, explicó Michael Kenney, uno de los integrantes del equipo de investigación.

Estudios anteriores que intentaron dividir el agua de mar para el combustible de hidrógeno, habían logrado cantidades bajas de corriente eléctrica, porque la corrosión se produce en corrientes altas.

Notimex/atj

Seguir leyendo
Anuncios
Anuncios

Revista Digital

 width=

Política

CDMX

Anuncios

Tienes que leer